
CS11-711 Advanced NLP

Pre-training for Fine-tuning
Daniel Fried

Site
https://cmu-anlp.github.io/

(w/ slides by Greg Durrett, Antonis Anastasopoulos,  
Graham Neubig, and Lucio Dery)

https://cmu-anlp.github.io/

Multi-task Learning
Overview

Terminology
• Multi-task learning is a general term for training on

multiple tasks

• Transfer learning is a type of multi-task learning where
we only really care about one of the tasks

• Pre-training is a type of transfer learning where one
objective is used first

• Few-shot, zero-shot learning indicates learning to
perform a task with very few, or zero labeled examples
for that task

Plethora of Tasks in NLP
• In NLP, there are a plethora of tasks, each requiring

different varieties of data

• Only text: e.g. language modeling

• Naturally occurring inputs and outputs: e.g.
machine translation

• Hand-labeled outputs: e.g. most analysis tasks

• And each in many languages, many domains!

Standard Multi-task
Learning

• Train representations to do well on multiple tasks at
once

this is an example
LM

Tagging
Encoder

• Often as simple as randomly choosing minibatch
from one of multiple tasks

Pre-train and Fine-Tune
• First train on one task, then train on another

this is an example LMEncoder

this is an example TaggingEncoder

Initialize

This is our main focus today.

Prompting
• Train on language generation task,  

make predictions in textualized tasks

this is an example LMEncoder

CMU is located in _ PredictEncoder

Freeze

We’ll mostly cover this next week.

Thinking about Pre-trained
Models

• Many pre-trained models have names like BERT,
RoBERTa, GPT-3, PaLM

• These often refer to a combination of

• Architecture: Usually Transformer-based, but

details vary & can be underspecified

• Data: Often webpages, Wikipedia, books…

• Training objective: Typically one of

• Masked Language Modeling (e.g. BERT)

• Seq-to-seq De-noising (e.g. BART, T5)

• Autoregressive Language Modeling (e.g. GPT)

(Masked) Language  
Modeling

Context-dependent
Embeddings

‣ Train a neural language model to predict the next
word given previous words in the sentence, use
the hidden states (output) at each step as word
embeddings

they see the batsthey swing the bats

ELMo: Embeddings from
Language Models

Peters et al. (2018)Image from Devlin et al. 2018

‣ Huge gains across many high-profile tasks: NER, question
answering, semantic role labeling, etc.

‣ Once ELMo is pre-trained, keep it “frozen” and use the
representations (“embeddings”, T) in down-stream tasks.

BERT: Bidirectional Embedding
Representations from Transformers

‣ Four major changes compared to ELMo:
‣ Transformers instead of LSTMs

‣ Bidirectional model with “Masked LM” objective instead of

standard LM

‣ Fine-tune the model when transferring to tasks,  

instead of freezing

‣ Operates over word pieces (byte pair encoding)

‣ AI2 made ELMo in spring 2018, GPT (transformer-based
ELMo) was released in summer 2018, BERT came out
October 2018

BERT

Devlin et al. (2019)

‣ ELMo is a unidirectional model (as is GPT): we can concatenate
two unidirectional models, but is this the right thing to do?

A stunning ballet dancer, Copeland is one of the best performers to see live.

ELMo

ELMo“performer”

“ballet dancer”

BERT

“ballet dancer/performer”

‣ ELMo reprs look at each direction in isolation; BERT looks at them jointly

BERT
‣ How to learn a “deeply bidirectional” model? What happens if we

just replace an LSTM with a transformer?

John visited Madagascar yesterday

visited Madag. yesterday …

‣ You could do this with a “one-
sided” transformer, but this
“two-sided” model can cheat

John visited Madagascar yesterday

ELMo (Language Modeling)
visited Madag. yesterday …

BERT

Devlin et al. (2019)

Masked Language Modeling
‣ How to prevent cheating? Next word prediction fundamentally

doesn't work for bidirectional models, instead do masked
language modeling

John visited [MASK] yesterday

Madagascar
‣ BERT formula: take a chunk

of text, mask out 15% of the
tokens, and try to predict
them

‣ Optimize  
P(Madagascar | John visited
[MASK] yesterday)

Devlin et al. (2019)

Next “Sentence” Prediction
‣ Input: [CLS] Text chunk 1 [SEP] Text chunk 2

[CLS] John visited [MASK] yesterday and really [MASK] it [SEP] I [MASK] Madonna.

Madagascar

Transformer

Transformer
…

enjoyed likeNotNext

‣ BERT objective: masked LM + next sentence prediction

‣ 50% of the time, take the true next chunk of text, 50% of the time take
a random other chunk. Predict whether the next chunk is the “true”
next

‣ Why might this be a good idea?

Devlin et al. (2019)

BERT Architecture
‣ BERT Base: 12 layers, 768-dim

per wordpiece token, 12 heads.
Total params = 110M

‣ BERT Large: 24 layers, 1024-
dim per wordpiece token, 16
heads. Total params = 340M

‣ Positional embeddings and
segment embeddings, 30k
word pieces

‣ This is the model that gets
pre-trained on a large
corpus

Devlin et al. (2019)

BERT: All Together
• Model: Multi-layer self-attention. Input sentence

or pair, w/ [CLS] token, subword representation.
Up to 340M parameters 
 
 
 
 
 

• Objective: Masked word prediction + next-
sentence prediction

• Data: BooksCorpus + English Wikipedia (16GB)

What can BERT do?

‣ Artificial [CLS] token is used as the vector to do classification from

‣ BERT can also do tagging by predicting tags at each word piece

‣ Sentence pair tasks (entailment): feed both sentences into BERT

Devlin et al. (2019)

What can BERT do?

‣ How does BERT model sentence pairs?
‣ Transformers can capture interactions

between the two sentences, even though
the NSP objective doesn’t really cause
this to happen

Transformer

Transformer
…

[CLS] A boy plays in the snow [SEP] A boy is outside

Entails (first sentence implies second is true)

How do models do it?

Williams et al. (2018)

‣ But, models are often overly sensitive to lexical overlap

A man is eating a sandwich [SEP] A person is eating a sandwich

A boy plays in the snow [SEP] A boy is outside

‣ Transformers can easily learn to spot words or short phrases that
are transformed

What can BERT NOT do?
‣ BERT cannot easily generate text

‣ Can fill in MASK tokens, but can’t generate left-to-right
(well, you could put MASK at the end repeatedly, but this is
slow)

‣ Masked language models are intended to be used
primarily for “analysis” tasks

Fine-tuning BERT
‣ Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 -

5e-5 ‣ Large changes to weights at top
(particularly in last layer to route
the right information to [CLS])

‣ Smaller changes to weights lower
down in the transformer

‣ Small LR and short fine-tuning
schedule mean weights don’t
change much

‣ Often requires tricky learning rate
schedules (“triangular” learning
rates with warmup periods)

Hyperparameter Optimization/Data
(RoBERTa)

(Liu et al. 2019)

• Model: Same as BERT (bidirectional encoder with up to 340M params)

• Objective: Same as BERT, but train longer, with bigger batches, run on

full paragraphs, and drop sentence prediction objective

• Data:

• BERT corpus: BooksCorpus + Wikipedia (16GB)

• Additional data: CC-News + OpenWebText + Stories (~140GB)

• Results: are empirically much better than BERT

DeBERTa

(He et al. 2021)

• Model: Transformer model with

• “disentangled attention” treating relative

position and content separately

• absolute positional embeddings added at end

of model

• Objective: Masked language modeling (w/

regularization by perturbing input embeddings)

• Data: 78GB Wikipedia, Reddit, and Subset of

Common Crawl

Seq-to-Seq  
De-noising

How do we pre-train
seq2seq models?

‣ LMs P(w): trained unidirectionally
‣ Masked LMs: trained bidirectionally but with masking
‣ How can we pre-train a model for P(y|x)?

‣ Well, why was BERT effective?
‣ Predicting a mask requires some kind of text “understanding”.

‣ What would it take to do the same for sequence prediction?
‣ Requirements: (1) should use unlabeled data; (2) should force

a model to attend from y back to x

BART

Lewis et al. (2019)

Infilling is longer
spans than masking

‣ Several possible strategies for corrupting a sequence are
explored in the BART paper

BART
‣ Model & Objective: Sequence-to-sequence Transformer

trained on this data: permute/make/delete tokens, then predict
full sequence autoregressively

Lewis et al. (2019)

‣ Data: Same as RoBERTa; 160 GB of text

BERT vs. BART
‣ BERT: only parameters are

an encoder, trained with
masked language modeling
objective. Cannot generate
text or do seq2seq tasks

‣ BART: both an encoder
and a decoder. Can also
use just the encoder
wherever we would use
BERT

B D

A _ C _
E

Lewis et al. (2019)

Seq2seq Architecture

‣ Encoder-decoder model is
structurally similar to your
language model

‣ Modification: decoder now
attends back to the input.
But the input doesn’t
change, so this just needs
to be encoded once

BART for Summarization
‣ Pre-train on the BART task: take random chunks of text, noise

them according to the schemes described, and try to “decode” the
clean text

‣ Can achieve good results even with few summaries to fine-
tune on, compared to basic seq2seq models which require
100k+ examples to do well

‣ Fine-tune on a summarization dataset: a news article is the
input and a summary of that article is the output (usually 1-3
sentences depending on the dataset)

Lewis et al. (2019)

BART for Summarization:
Outputs

Lewis et al. (2019)

T5
‣ Objective: similar denoising scheme to BART (they were

released within a week of each other in fall 2019).
‣ Input: text with gaps. Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

‣ Lower computational cost compared to BART: predicts fewer tokens.

T5

‣ We still haven't hit the limit of bigger data being useful for pre-
training: here we see stronger MT results from the biggest
data

‣ Colossal Cleaned Common Crawl: 750 GB of text

summarization machine translation

Raffel et al. (2019)
‣ Models: larger than BART; up to 11B parameters

Successes of T5
‣ How can we handle a task like QA by framing it as a

seq2seq problem?

‣ Format: Question \n Passage —> Answer
encoder decoder

Raffel et al. (2019)

UnifiedQA

‣ Past work: different architectures for every QA formulation.
(Span selection, answer generation, multiple choice, …)

‣ Now: one 11B parameter T5 model

Abstractive question, requires generating free-form answer

Khashabi et al. (2020)

UnifiedQA

Multiple choice

Yes/no

‣ Past work: different architectures for every QA formulation.
(Span selection, answer generation, multiple choice, …)

‣ Now: one 11B parameter T5 model

Khashabi et al. (2020)

Takeaways

‣ UnifiedQA suggests that big generative models are good at
generalizing across tasks and even to new tasks (although QA
results have a long way to go)

‣ If we have a strong enough pre-trained model and train on
enough tasks, can we generalize to new tasks?

‣ How do we specify those new tasks if they’re not close to tasks
we’ve already run on?

‣ Answer: prompting. But to do that well, we’ll need to scale up
further

‣ BART and T5 are useful for all sorts of seq2seq tasks involving
language — so if you were going to use a seq2seq model, use one
of these. 
(Caveat: need specialized models for language-to-code, like
PLBART and CodeT5; multi-lingual tasks like mT5)

Practicals of large pre-
trained models

Impacts of Transfer Learning

• Downstream performance: Improved downstream
task performance

• Faster convergence: Fewer epochs to reach same
level of performance

• Data-efficiency: Fewer datapoints required to
achieve good performance

Is Pre-train then Fine-tune
always appropriate ?

Pros

• One model for all
downstream tasks

• Amortize compute burden

• All the benefits of transfer
learning

Cons

• Good pre-training
performance does not imply
good downstream perf

• No free lunch - one pre-
training objective cannot
perform well across all end
tasks

• No clear way to cross-
validate pre-training stage

Continued Pre-training

(Guruangan et al. 2020)

• What can you do if you have lots of unlabeled text in
your task domain?

• Take RoBERTa and continue to pre-train with the MLM

objective on your (large) unlabeled text

• Then, fine-tune with your (small) labeled data

Continued Pre-training

(Guruangan et al. 2020)

Pre-training design choices

ICML Experiments

derylucio

November 2021

Objective Data (D) Transform (T) Representation (R) Output (O)

BERT Out-of-domain BERT-Op Bidirectional Denoise Token

TAPT Task data BERT-Op Bidirectional Denoise Token

DAPT In-domain BERT-Op Bidirectional Denoise Token

ELMO Out-of-domain No-Op Left-to-Right Next Token

and Right-to-Left

GPT Out-of-domain No-Op Left-To-Right Next Token

XLNet Out-of-domain No-Op Random factorized Next Token

Electra Neural LM Data Replace Bidirectional Real / Synthetic

.

1

(Dery et al. 2021, Dery et al. 2022)

• We can generate many more objectives by taking this view

• Let the end-task choose which objectives are most useful

Practicals of using large pre-
trained models

• Gradient accumulation

• Fitting large batches lead to OOMs - run several
smaller batches and back-prop to gather
gradients before optimizer step

• Selective finetuning

• Top few layers -> layer-norm layers -> Every
thing else

HuggingFace Model Hub
• The HF model hub is one go-to source for models

https://huggingface.co/models

Questions?

