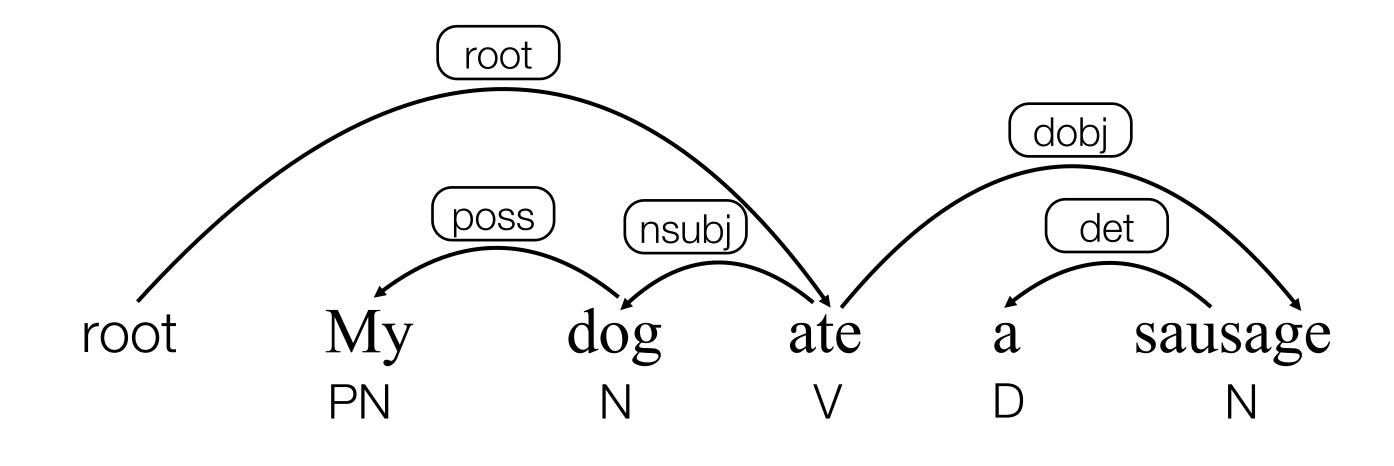


Language Technologies Institute

Advanced NLP 11-711 · October 2023

Syntax and parsing 2; Semantics 1

(Some slides adapted from Lori Levin, Noah Smith, and J&M)


Recap: Parsing

The process of predicting syntactic representations

Different types of syntactic representations are possible, for example:

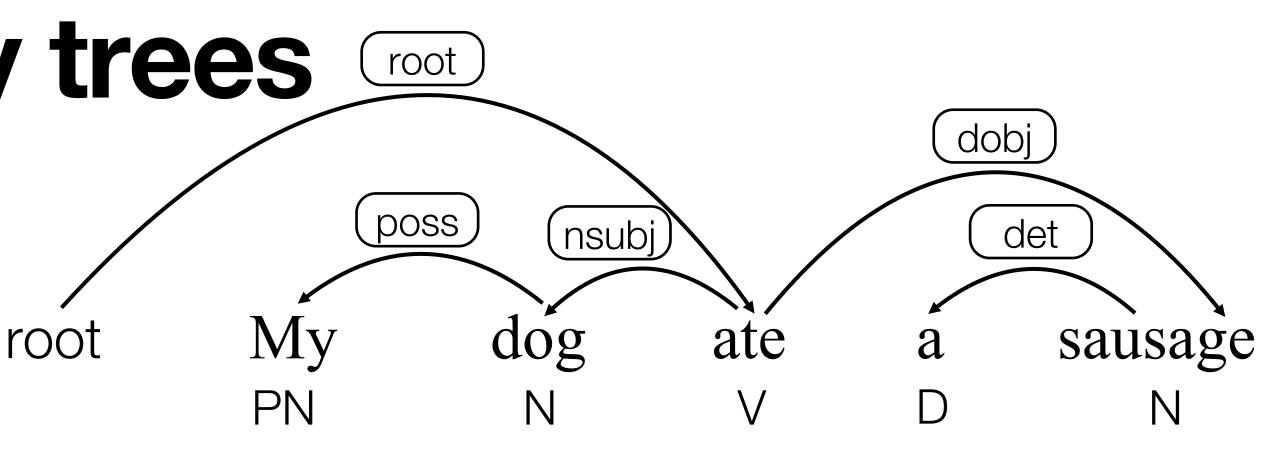
constituency (aka phrase-structure) tree

dependency tree

Recap: Dependency trees

Nodes are words (along with part-of-speech tags)

Directed arcs encode syntactic dependencies between words

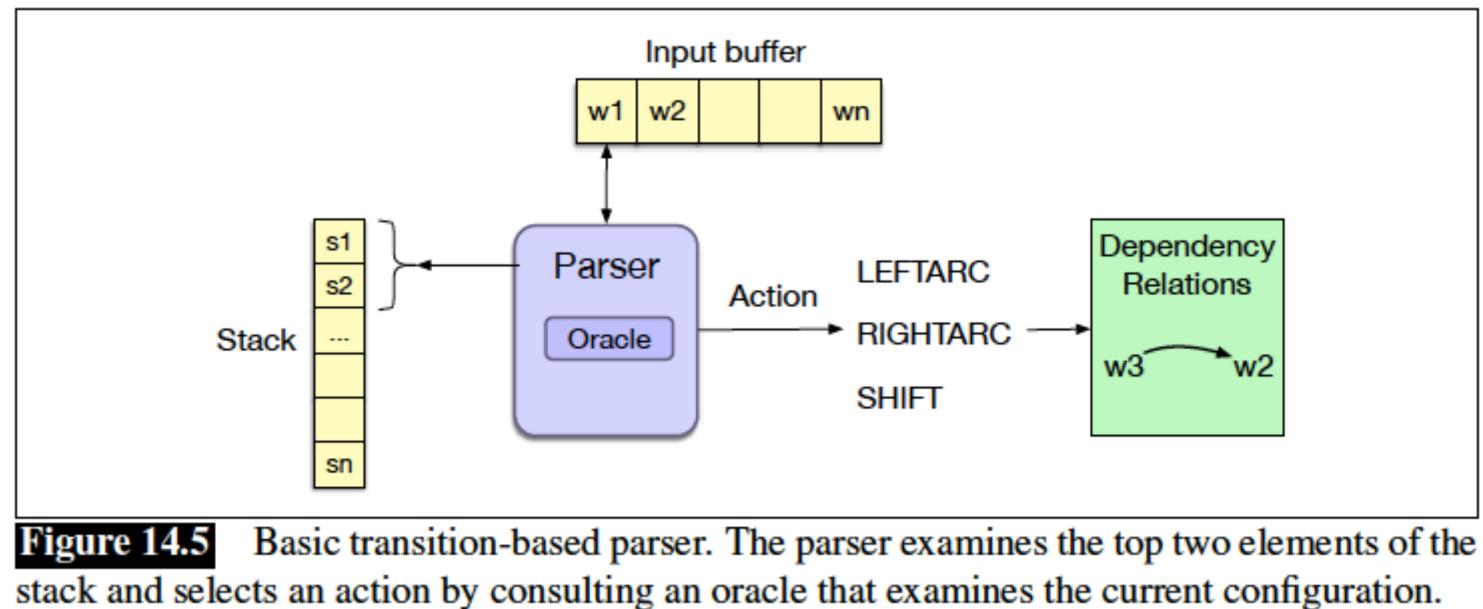

Labels are types of relations between words

poss: possessive

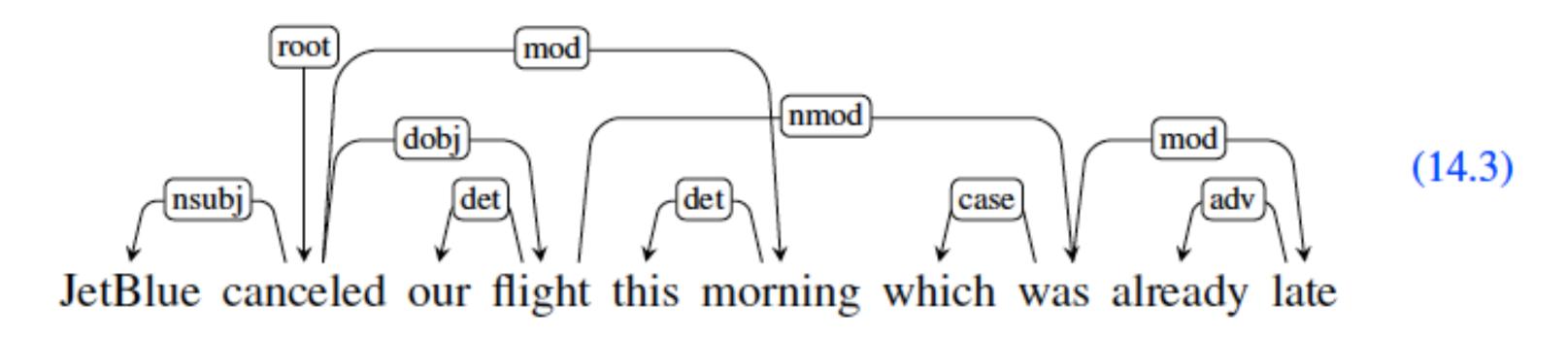
dobj: direct object

nsubj: (noun) subject

det: determiner



Dependency Parsers Two main approaches:

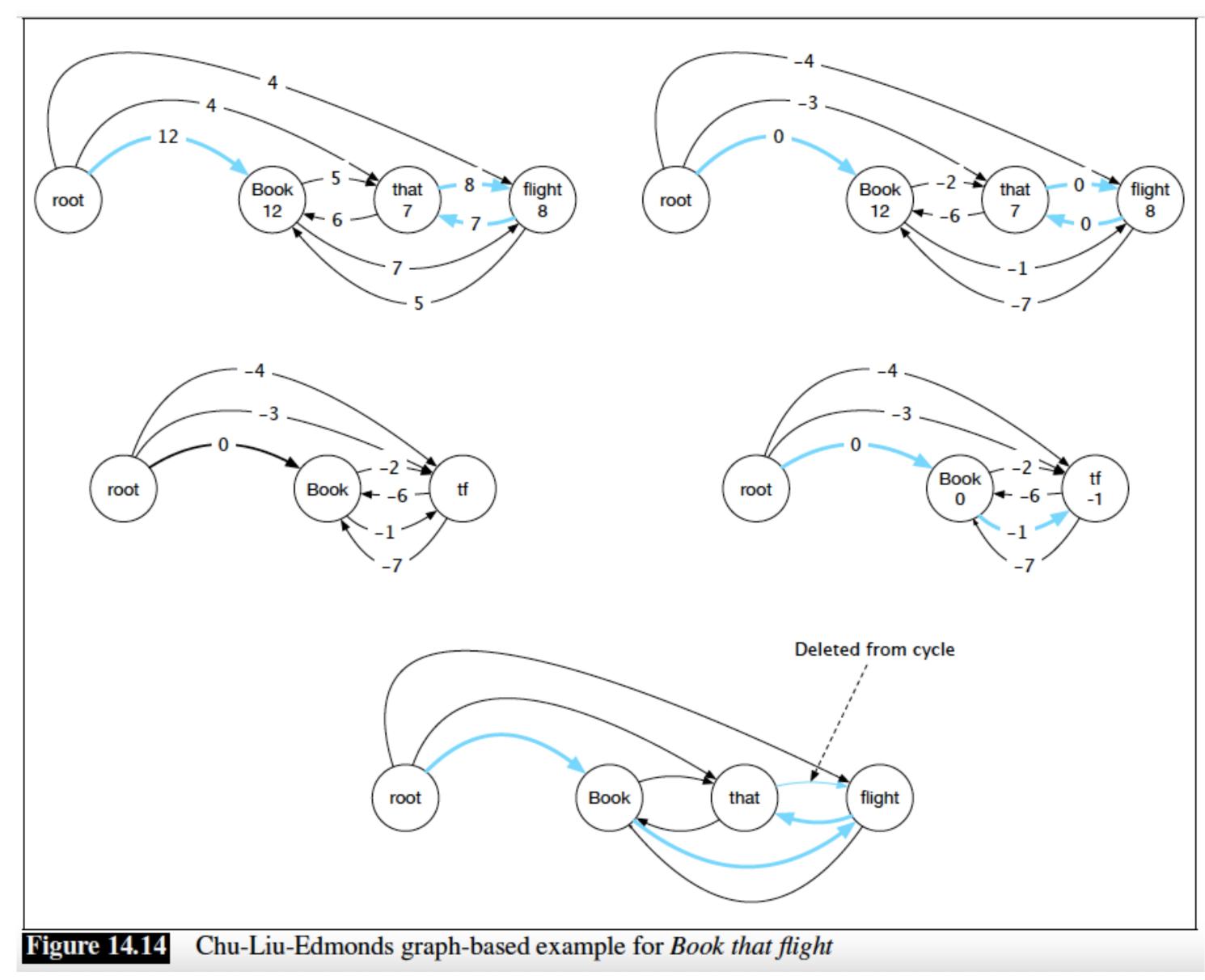

- Transition-based dependency parsing
- Graph-based dependency parsing

Transition-based dependency parsing

- Oracle is learned from a treebank
- Complexity is linear in length of sentence
- Cannot produce non-projective parse trees

Non-projective parse tree

- Note crossing edges


Not that common in English, but very common in free word order languages

Graph-based dependency parsing

- Score every edge in fully-connected graph
- Find maximum spanning tree starting at ROOT

- Scoring is learned from a treebank
- Not linear time, but can produce non-projective parse trees

Graph-based dependency parsing

Recap: Chomsky Hierarchy

Type 3: Finite State Machines/Regular Expressions/Regular Grammars

 $\blacksquare A \rightarrow Bw \text{ or } A \rightarrow w$

- Type 2: Push Down Automata/Context Free Grammars
 - $A \rightarrow \gamma$ where γ is any sequence of terminals/non-terminals
- Type 1: Linear-Bounded Automata/Context Sensitive Grammars
 - $\Box \alpha A\beta \rightarrow \alpha \gamma \beta$ where γ is not empty
- Type 0: Turing Machines/Unrestricted Grammars

■ $aAb \rightarrow aab$ **but** $bAb \rightarrow bb$

Recap: Mildly Context-Sensitive Grammars

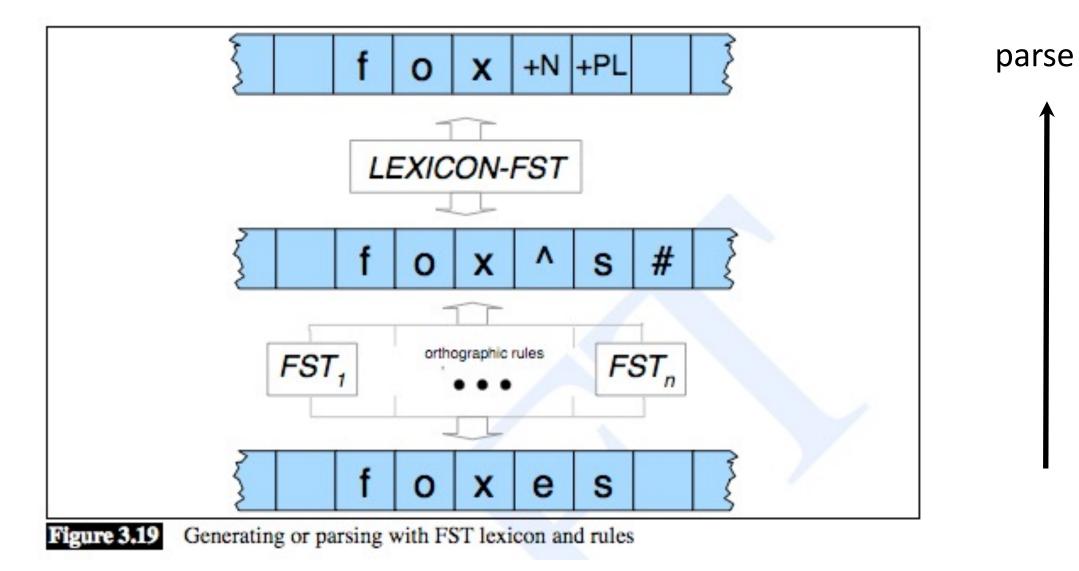
- We really like CFGs, but are they in fact expressive enough to capture all human grammar?
- Many approaches start with a "CF backbone", and add registers, equations, or hacks, that are *not* CF.
- Several non-hack extensions (CCG, TAG, etc.) turn out to be weakly equivalent!
 - "Mildly context sensitive"
 - So CSFs get even less respect...
 - And so much for the Chomsky Hierarchy being such a big deal

Feature structures and Verb Subcategorization Frames

Review: Inflectional Morphology and syntactic agreement

- Morphology is the study of the internal structure of words.
 - - [grace]
 - [[grace]ful]
 - [un[grace]ful]]
 - word are marked on that word.

 - ulletregular inflection.
 - This student walks.
 - These students walk.
 - These students walked.


- *Compounding.* Creating new words by combining existing words • With or without spaces: surfboard, golf ball, blackboard

Derivational morphology. How new words are created from existing words.

Inflectional morphology. How features relevant to the syntactic context of a

• This example illustrates number (singular and plural) and tense (present and past). Green indicates irregular. Blue indicates zero marking of inflection. Red indicates

Review: Features, morphology, FSTs:

Linguistic features

- (Linguistic "features" vs. ML "features".)
- in English, e.g., subject/verb
 - I often swim
 - He often swims
 - They often swim
- N1p, ..., N3s, N3p, ...

- *Each* with its own set of grammar rules!

Human languages usually include agreement constraints;

• Could have a separate category for each minor type: N1s,

- S3p \rightarrow NP3p VP3p
- S3s \rightarrow NP3s VP3s
- S1p \rightarrow NP1p VP1p
- S1s \rightarrow NP1s VP1s
- NP3p \rightarrow Det-p N3p
- NP3s \rightarrow Det-s N3s

. . .

. . .

- NP1p \rightarrow Det-p N1p
- NP1s \rightarrow Det-s N1s

A day without features...

Linguistic features

- Could have a separate category for each minor type: N1s, N1p, ..., N3s, N3p, ...
 Each with its own set of grammar rules!
- Much better: represent these regularities using independent *features*: number, gender, person, ...
- Features are typically introduced by lexicon; checked and propagated by *constraint equations* attached to grammar rules

Feature Structures (FSs)

to *Feature Structures*:

[Det

[root: *a*]

[number: sg]]

A feature structure's values can in turn be FSs:

[NP

- [agreement: [[number: sg]
 - [person: 3rd]]]]
- Feature Path: <NP agreement person>

Having multiple orthogonal features with values leads naturally

Adding constraints to CFG rules

- $S \rightarrow NP VP$ <NP number> = <VP number>
- NP \rightarrow Det Nominal <NP head> = <Nominal head>

<Det head agree> = <Nominal head agree>

FSs from lexicon, constrs. from rules

Lexicon entry: Det [root: *a*] [number: sg]]

• Combine to get result: [NP [Det [root: *a*] [number: sg]] [Nominal [number: sg] ...] [number: sg]]

Rule with constraints: $NP \rightarrow Det Nominal$ <NP number> = <Det number> <NP number> = <Nominal number>

Similar issue with VP types

Another place where grammar rules could explode: Jack laughed $VP \rightarrow Verb$ for many specific verbs Jack found a key $VP \rightarrow Verb NP$ for many specific verbs Jack gave Sue the paper VP → Verb NP NP for many specific verbs

Verb Subcategorization

Verbs have sets of allowed args. Could have many sets of VP rules. Instead, have a SUBCAT feature, marking sets of allowed arguments:

+none -- Jack laughed +np -- Jack found a key +np+np -- Jack gave Sue the paper +vp:inf -- Jack wants to fly +np+vp:inf -- Jack told the man to go +vp:ing -- Jack keeps hoping for the best +np+vp:ing -- Jack caught Sam looking at his desk +np+vp:base -- Jack watched Sam look at his desk +np+pp:to -- Jack gave the key to the man

50-100 possible *frames* for English; a single verb can have several. (Notation from James Allen "Natural Language Understanding")

+pp:loc -- Jack is at the store
+np+pp:loc -- Jack put the box in the corner
+pp:mot -- Jack went to the store
+np+pp:mot -- Jack took the hat to the party
+adjp -- Jack is happy
+np+adjp -- Jack kept the dinner hot
+sthat -- Jack believed that the world was flat
+sfor -- Jack hoped for the man to win

a prize

Verb frames are *not* totally semantic

• It does seem to be partly lexical: John wants to fly John likes to fly John likes flying *John wants flying

• Can vary with dialect:

??The car needs washed (only in Pittsburghese?!)

Frames for "ask" (in J+M notation)

Subcat	Exampl
Quo	asked [¿
NP	asking [
Swh	asked [s
Sto	ask [Sto
PP	that mea
Vto	asked [V
NP Sif	asked [_N
NP NP	asked [_N
NP Swh	asked [_N

le

- *Quo* "What was it like?"]
- [*NP* a question]
- Swh what trades you're interested in]
- him to tell you]
- ans asking [*PP* at home]
- *Vto* to see a girl called Evelyn]
- NP him] [Sif whether he could make]
- NP myself] [NP a question]
- NP him] [$_{Swh}$ why he took time off]

Adding transitivity constraint

- $S \rightarrow NP VP$
 - <NP number> = <VP number>
- NP \rightarrow Det Nominal

 - <NP head> = <Nominal head> <Det head agree> = <Nominal head agree>
- VP \rightarrow Verb NP <VP head> = <Verb head> <VP head subcat> = +np (which means transitive)

Applying a verb subcat feature

Lexicon entry: Verb [root: *found*] [head: find] [subcat: +np]]

- Combine to get result: [VP [Verb [root: *found*] [head: find]
 - [subcat: +np]]
 - [NP ...]
 - [head: find [subcat: +np]]]]

Rule with constraints: $VP \rightarrow Verb$ NP <VP head> = <Verb head> <VP head subcat> = +np

- VP \rightarrow Verb <VP head> = <Verb head>
 - <VP head subcat> = +np

• VP \rightarrow Verb $(\uparrow head) = (\downarrow head)$ $(\uparrow head subcat) = +np$

Relation to LFG constraint notation

- NP

from JM book is the same as the LFG expression

NP

Unification

- Merging FSs (and failing if not possible) is often done through *Unification*
- Simple FS examples:
 [number sg]∐[number sg] = [number sg]
 [number sg]∐[number pl] FAILS
 [number sg]∐[number []] = [number sg]
 [number sg]∐[person 3rd] = [number sg,
 - 3rd] = [number sg, person 3rd]

New kind of "=" sign

- Already had two meanings in programming: - ":=" means "*make* the left be equal to the right"
 - "==" means "the left and right happen to be equal"
- Now, a third meaning: — □ "=" means "make the left and the right be the same thing (from now on)" (and fail if not possible)
 - (Like Lisp EQ.)

Seems tricky. Why bother?

- Unification allows the systems that use it to handle many complex phenomena in "simple" elegant ways:
 - There seems to be <u>a dog</u> in the yard.
 - There seem to be dogs in the yard
- Unification makes this work smoothly.
 - Make the Subjects of the clauses EQ:

<VP subj> = <VP COMP subj>

[VP [subj: (1)] [COMP [subj: (1)]]

- (Ask Lori Levin for LFG details.)

Complexity

- Unification parsing is "quite expensive". – NP-Complete in some versions!
- So maybe *too* powerful?
 - (like GoTo or Call-by-Name?)

 - Add restrictions to make it tractable: Tomita's Pseudo-unification (Tomabechi too) • Gerald Penn work on tractable HPSG: ALE

Semantic roles and PropBank and FrameNet

• Before we talk about semantic roles, we need to talk about semantics (meaning).

Key Challenge of Meaning

be widely known.

- Examples:
 - Reading newspaper stories
 - Using restaurant menus
 - Learning to use a new piece of software

• We actually say very little - much more is left unsaid, because it's assumed to

Meaning Representation Languages

- Symbolic representation that does two jobs:
 - Conveys the meaning of a sentence
 - Represents (some part of) the world
- We're assuming a very literal, context-independent, inference-free version of meaning!
 - Semantics vs. linguists' "pragmatics"
 - "Meaning representation" vs some philosophers' use of the term "semantics".
- For now we'll use first-order logic. Also called First-Order Predicate Calculus. Logical form.

Representing NL meaning

- Fortunately, there has been a lot of work on this (since Aristotle, at least)
 - Panini in India too
- Especially, *formal mathematical logic* since 1850s (!), starting with George Boole etc.
 - Wanted to replace NL proofs with something more formal

Deep connections to set theory

Model-Theoretic Semantics

- **Model:** a simplified representation of (some part of) the world: **sets** of objects, properties, relations (domain).
- Non-logical vocabulary: like variable and function names
 - Each element denotes (maps to) a well-defined part of the model. ("Grounding".)
 - Such a mapping is called an interpretation
- **Logical vocabulary:** used to *compose* larger meanings
 - like reserved words in programming languages
 - or function words in grammar

A Model

- **Domain**: Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian
- **Properties**: Green Mango and Udipi are crowded; Casbah is expensive
- **Relations**: Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian
- n, k, r, f, g, c, u, t, m, i
- Crowded = $\{g, u\}$
- Expensive = $\{c\}$
- Likes = {(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)}
- Serves = {(g, t), (c, m), (u, i)}

Some English

- Karen likes Green Mango and Frederick likes Casbah.
- Noah and Rebecca like the same restaurants.
- Noah likes expensive restaurants.
- Not everybody likes Green Mango.

- compare them to our model.
- particular model.

What we want is to be able to represent these statements in a way that lets us

Truth-conditional semantics: need operators and their meanings, given a

First-Order Logic

- - Noah, SpouseOf(Karen), X
- is a **Proposition**
 - Expensive(Casbah)
 - Serves(Casbah, Mediterranean)
- Logical connectives (operators):

∧ (and), ∨ (or), ¬ (not), \Rightarrow (implies), ...

• Quantifiers ...

• Terms refer to elements of the domain: constants, functions, and variables

• **Predicates** are used to refer to sets and relations; predicate applied to a term

Logical operators: truth tables

Α	В	ΑΛΒ	ΑνΒ	$A \Rightarrow B$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

• Only really need \land and \neg "A V B" is " $(\neg A) \land (\neg B)$ " " $A \Rightarrow B$ " is " $\neg (A \land \neg B)$ " or " $\neg A \lor B$ "

Quantifiers in FOL

- Two ways to use variables:

 - refer to all objects in the domain (**universal**; \forall ; "for all")

- A restaurant near CMU serves Indian food Near(x, CMU) \land Serves(x, Indian)
- All expensive restaurants are far from campus Expensive(x) $\Rightarrow \neg Near(x, CMU)$

• refer to one anonymous object from the domain (existential;]; "there exists")

 $\exists x \text{ Restaurant}(x) \land$

$\forall x \text{ Restaurant}(x) \land$

Inference

- knowledge base.
- Forward chaining with modus ponens: given a and $\alpha \Rightarrow \beta$, we know β .
- that would prove β .
 - Not the same as backward reasoning (abduction).
 - Used by Prolog
- Both are sound, neither is complete by itself.

• Big idea: extend the knowledge base, or check some proposition against the

• **Backward chaining** takes a query β and looks for propositions α and $\alpha \Rightarrow \beta$

Inference example

- Starting with these facts: Restaurant(Udipi) $\forall x \text{ Restaurant}(x) \Rightarrow \text{Likes}(\text{Noah}, x)$
- We can "turn a crank" and get this *new* fact: Likes(Noah, Udipi)

FOL: Meta-theory

- Well-defined set-theoretic semantics
- **Sound:** can't prove false things
- (e.g., with "resolution theorem prover")

- Well-behaved, well-understood
- Mission accomplished?

Complete: can prove everything that logically follows from a set of axioms

FOL: But there are also "Issues"

- "Meanings" of sentences are *truth values*.
- Extensional semantics (vs. Intensional); Closed World issue
- Only *first-order* (no quantifying over *predicates* [which the book does without comment!]).
- Not very good for *"fluents"* (time-varying things, real-valued quantities, etc.). Heard of Zeno?
- Brittle: anything follows from any contradiction(!)
- Goedel incompleteness: "This statement has no proof"!

FOL: But there are also "Issues"

- "Meanings" of sentences are *truth values*.
- Extensional semantics (vs. Intensional); Closed World issue
- Only *first-order* (no quantifying over *predicates* [which the book] does without comment]).
- Not very good for "fluents" (time-varying things, real-valued) quantities, etc.)
- Brittle: anything follows from any contradiction(!)
- **Goedel incompleteness:** "This statement has no proof"!
 - (Finite axiom sets are incomplete w.r.t. the real world.)
- extensions) but not its inference mechanisms.

So: Most systems use the FOL descriptive apparatus (with

Lots More To Say About MRLs!

- See chapter 17 for more about:
 - Representing events and states in FOL
 - Dealing with optional arguments (e.g., "eat")
 - Representing time
 - Non-FOL approaches to meaning
- Interest in this topic (in NLP) waned during the 1990s and early 2000s.
 - It has come back, with the rise of semi-structured databases like Wikipedia.

Semantic roles

and PropBank and FrameNet

Semantic Cases/Thematic Roles

Developed in late 1960's and 1970's (Fillmore and others)

• Postulate a limited set of abstract semantic relationships

• Part of the verb's (predicate's) semantics

between a verb & its arguments: thematic roles or case roles

Verbs' subcat frames and roles change together

• John broke the window with a hammer.

• The hammer broke the window.

• The window broke.

• John broke the window when Bill threw him into it.

Related problem: Mismatch between FOPC and linguistic arguments

- John broke the window with a hammer.
 - Broke(j,w,h)
- The hammer broke the window.
 - Broke(h,w)
- The window broke.

Broke(w)

 Relationship between 1st argument and the predicate is implicit, inaccessible to the system

- John broke the window with the hammer
- John: AGENT role window: THEME role hammer: INSTRUMENT role

Extend LF notation to explicitly use semantic roles

Thematic Role example

Thematic Roles

- etc.?
- By definition:
- Testing via sentence rewrite:
 - John intentionally broke the window
 - *The hammer intentionally broke the window

Is there a precise way to define meaning of AGENT, THEME,

— "The AGENT is an instigator of the action described by the sentence."

Thematic Roles [2]

- THEME
 - Describes the primary object undergoing some change or being acted upon
 - For transitive verb X, "what was Xed?"
 - The gray eagle saw the mouse "What was seen?" (A: the mouse)

• (Also called "PATIENT")

- Thematic roles describe general patterns of participants in generic events.
- First proposed by Panini, before 400 BC!

Can We Generalize?

• This gives us a kind of shallow, partial semantic representation.

Thematic Roles

Role	Definition	Example
Agent	Volitional causer of the event	The waiter spilled the soup.
Force	Non-volitional causer of the event around.	
Experiencer		Mary has a headache.
Theme	Most directly affected participant	Mary swallowed the pill .
Result	End-product of an event	We constructed a new building.
Content	Proposition of a propositional event	Mary knows you hate her .
Instrument		You shot her with a pistol.
Beneficiary		I made you a reservation.
Source	Origin of a transferred thing	I flew in from Pittsburgh .
Goal	Destination of a transferred thing	Go to hell !

Thematic Roles

			Dumb joke!
	Role	Definition	Example
	Agent	Volitional causer of the event	The waiter spilled the soup.
	Force	Non-volitional causer of the event	The wind blew the leaves around.
	Experiencer		Mary has a headache.
Patient	Theme	Most directly affected participant	Mary swallowed the pill .
	Result	End-product of an event	We constructed a new building.
	Content	Proposition of a propositional event	Mary knows you hate her .
	Instrument		You shot her with a pistol.
	Beneficiary		I made you a reservation.
	Source	Origin of a transferred thing	I flew in from Pittsburgh .
	Goal	Destination of a transferred thing	Go to hell !

Review: Verb Subcategorization

Verbs have sets of allowed args. Could have many sets of VP rules. Instead, have a SUBCAT feature, marking sets of allowed arguments:

+none -- Jack laughed +np -- Jack found a key +np+np -- Jack gave Sue the paper +vp:inf -- Jack wants to fly +np+vp:inf -- Jack told the man to go +vp:ing -- Jack keeps hoping for the best +np+vp:ing -- Jack caught Sam looking at his desk +np+vp:base -- Jack watched Sam look at his desk +np+pp:to -- Jack gave the key to the man

50-100 possible *frames* for English; a single verb can have several. (Notation from James Allen "Natural Language Understanding")

+pp:loc -- Jack is at the store
+np+pp:loc -- Jack put the box in the corner
+pp:mot -- Jack went to the store
+np+pp:mot -- Jack took the hat to the party
+adjp -- Jack is happy
+np+adjp -- Jack kept the dinner hot
+sthat -- Jack believed that the world was flat
+sfor -- Jack hoped for the man to win

a prize

Thematic Grid or Case Frame

- Example: break
 - The child broke the vase. < agent theme > subj obj theme instr > < agent subj obj PP instr > obj subj < theme > subj
- The child broke the vase with a hammer. - The hammer broke the vase. < theme The vase broke.

Thematic Grid or Case Frame

Example: break
 The child broke the vase. < agent

The child broke the vase with a hammer.

— The hammer broke the vase.

The vase broke.

The Thematic Grid or Case Frame shows

- How many arguments the verb has
- What roles the arguments have
- Where to find each argument
 - For example, you can find the agent in the subject position
- theme > obj subj theme instr > < agent subj PP obj < theme instr > obj subj < theme > subj

Diathesis Alternation:

a change in the number of arguments or the grammatical relations associated with each argument

- Chris gave a book to Dana.
- A book was given to Dana by C
- Chris gave Dana a book.
- Dana was given a book by Chri

	<	agent	theme	goal >
		subj	obj	PP
Chris.	<	agent	theme	goal >
		PP	subj	PP
	<	agent	theme	goal >
		subj	obj2	obj
ris.	<	agent	theme	goal >
		PP	obj	subj

The Trouble With Thematic Roles

- They are not formally defined.
- Some roles generalize well, but not all.
- General roles are overly general:
 - "agent verb theme with instrument" and "instrument verb theme" ...
 - The cook opened the jar with the new gadget.
 - \rightarrow The new gadget opened the jar.
 - Susan ate the sliced banana with a fork.
 - \rightarrow #The fork ate the sliced banana.

Two Datasets

- Proposition Bank (PropBank): verb-specific thematic roles
- FrameNet: "frame"-specific thematic roles

 These are both lexicons containing case frames/thematic grids for each verb.

Proposition Bank (PropBank)

- A set of verb-sense-specific "frames" with informal English glosses describing the roles
- Conventions for labeling optional modifier roles
 Penn Treebank is labeled with those verb-sense-specific
- Penn Treebank is labeled wit semantic roles.

- arg0: agreer
- arg1: proposition
- arg2: other entity agreeing

• arg0 is proto-agent, arg1 proto-patient

"Agree" in PropBank

• The group agreed it wouldn't make an offer. Usually John agrees with Mary on everything.

"Fall (move downward)" in PropBank

- arg1: logical subject, patient, thing falling
- arg2: extent, amount fallen
- arg3: starting point
- arg4: ending point
- argM-loc: medium
- Sales fell to \$251.2 million from \$278.8 million.
- The average junk bond fell by 4.2%.
- The meteor fell through the atmosphere, crashing into Cambridge.

- FrameNet is similar, but abstracts from specific verbs, so that semantic **frames** are first-class citizens.
- For example, there is a single frame called change_position_on_a_scale.

FrameNet

change_position_on_a_scale

	Core Roles
ATTRIBUTE	The ATTRIBUTE is a scalar property that the IT
DIFFERENCE	The distance by which an ITEM changes its scale.
FINAL_STATE	A description that presents the ITEM's state after the ATTRIBUTE's value as an independent pred
Final_value	The position on the scale where the Item ends u
INITIAL_STATE	A description that presents the ITEM's state be in the ATTRIBUTE's value as an independent pr
INITIAL_VALUE	The initial position on the scale from which the away.
ITEM	The entity that has a position on the scale.
VALUE_RANGE	A portion of the scale, typically identified by
	along which the values of the ATTRIBUTE fluct
	Some Non-Core Roles
DURATION	The length of time over which the change takes
Speed	The rate of change of the VALUE.
Group	The GROUP in which an ITEM changes the W TRIBUTE in a specified way.

Oil **rose** in price by 2% It has **increased** to having them 1 day a month. Microsoft shares **fell** to 7 5/8. Colon cancer incidence **fell** by 50% among men.

TEM possesses. position on the

ter the change in dication.

up.

efore the change redication. the ITEM moves

y its end points, tuate.

s place.

value of an AT-

Many words, not just verbs, share the same frame:

Verbs: advance, climb, decline, decrease, diminish, dip, double, drop, dwindle, edge, explode, fall, fluctuate, gain, grow, increase, jump, move, mushroom, plummet, reach, rise, rocket, shift, skyrocket, slide, soar, swell, swing, triple, tumble **Nouns**: decline, decrease, escalation, explosion, fall, fluctuation, gain, growth, hike, increase, rise, shift, tumble **Adverb**: increasingly

Conversely, one word has many frames Example: rise

- **Change-position-on-a-scale**: Oil ROSE in price by two percent.
- - Source: starting point of the change of posture.
 - **Charles ROSE from his armchair.** ____
- \bullet concerned only with the transition from the sleeping state to a wakeful state.
 - ____ to a construction clearing a few miles away.
- lacksquaremover.
 - The balloon ROSE upward.
- \bullet case of the sun, the appearance begins the day.
 - _____ it sets at about the same time the sun sets.

Each day the sun's RISE offers us a new day.

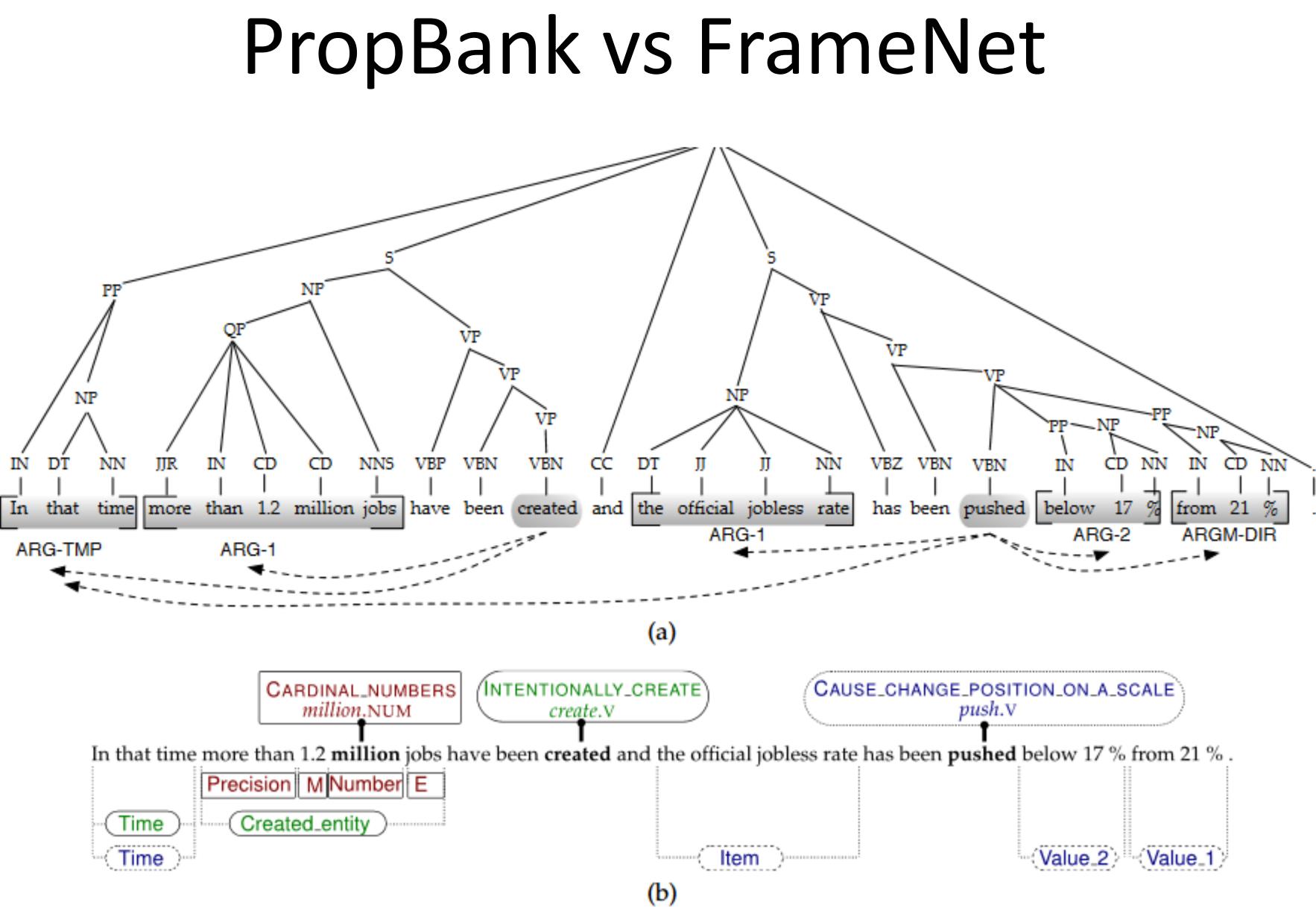
Change-posture: a protagonist changes the overall position or posture of a body.

Get-up: A Protagonist leaves the place where they have slept, their Bed, to begin or resume domestic, professional, or other activities. Getting up is distinct from Waking up, which is

I ROSE from bed, threw on a pair of camouflage shorts and drove my little Toyota Corolla

Motion-directional: In this frame a Theme moves in a certain Direction which is often determined by gravity or other natural, physical forces. The Theme is not necessarily a self-

Sidereal-appearance: An Astronomical_entity comes into view above the horizon as part of a regular, periodic process of (apparent) motion of theAstronomical_entity across the sky. In the


At the time of the new moon, the moon RISES at about the same time the sun rises, and

- Frames are not just for verbs!
- Verbs: advance, climb, decline, decrease, diminish, dip, double, drop, dwindle, edge, explode, fall, fluctuate, gain, grow, increase, jump, move, mushroom, plummet, reach, rise, rocket, shift, skyrocket, slide, soar, swell, swing, triple, tumble
- Nouns: decline, decrease, escalation, explosion, fall, fluctuation, gain, growth, hike, increase, rise, shift, tumble
- Adverb: increasingly

FrameNet

- Includes inheritance and causation relationships among frames. • Examples included, but little fully-annotated corpus data.

FrameNet

- It would be really useful if these different resources were interconnected in a useful way.
- SemLink project is (was?) trying to do that
- Unified Verb Index (UVI) connects
 - PropBank
 - VerbNet
 - FrameNet
 - WordNet/OntoNotes

SemLink

- Input: sentence
- identifying each of its arguments.
- Example:

 Somewhere between syntactic parsing and full-fledged compositional semantics.

*Predicates are sometimes identified in the input, sometimes not.

Semantic Role Labeling

• Output: for each predicate*, labeled spans

[agent The batter] hit [patient the ball] [time yesterday]

But wait. How is this different from dependency parsing?

- Semantic role labeling - [agent The batter] hit [patient the ball] [time yesterday]
- Dependency parsing - [subj The batter] hit [obj the ball] [mod yesterday]

But wait. How is this different from dependency parsing?

- Semantic role labeling - [agent The batter] hit [patient the ball] [time yesterday]
- Dependency parsing - [subj The batter] hit [obj the ball] [mod yesterday]
- \succ These are not the same task. Semantic role labeling is much harder.

Subject vs agent

- Subject is a grammatical relation
- Agent is a semantic role
- In English, a subject has these properties It comes before the verb
 - If it is a pronoun, it is in nominative case (in a finite clause)
 - I/he/she/we/they hit the ball.
 - *Me/him/her/us/them hit the ball.
 - If the verb is in present tense, it agrees with the subject
 - She/he/it hits the ball.
 - I/we/they hit the ball.
 - *She/he/it hit the ball.
 - *I/we/they hits the ball.
 - I hit the ball.
 - I hit the balls.

Subject vs agent

- In the most typical sentences (for some definition of "typical"), the agent is the subject:
 - The batter hit the ball.
 - Chris opened the door.
 - The teacher gave books to the students.
- Sometimes the agent is not the subject:
 The ball was hit by the batter.
 The balls were hit by the batter.
- Sometimes the subject is not the agent:
 - The door opened.
 - The key opened the door.
 - The students were given books.
 - Books were given to the students.

- Input: sentence
- Output: segmentation into roles, with labels

- Example from J&M II book:
- [arg0 The Examiner] issued [arg1 a special edition] [argM-tmp yesterday]
- (In Propbank notation, arg0 is proto-agent, arg1 is proto-patient.) \bullet

Semantic Role Labeling

Semantic Role Labeling: How It Works

• First, parse.

• For each predicate word in the parse: For each node in the parse: **Classify** the node with respect to the predicate.

Features for Semantic Role Labeling

- What is the predicate?
- Phrase type of the constituent
- Head word of the constituent, its POS
- Path in the parse tree from the constituent to the predicate
- Active or passive
- Is the phrase before or after the predicate?
- Subcategorization (≈ grammar rule) of the predicate

Feature example

• Example sentence:

[arg0 The Examiner] issued [arg1 a special edition] [argM-tmp

yesterday]

Arg0 features:

issued, NP, Examiner, NNP, *path*, active, before, VP->VBD NP PP

Example path

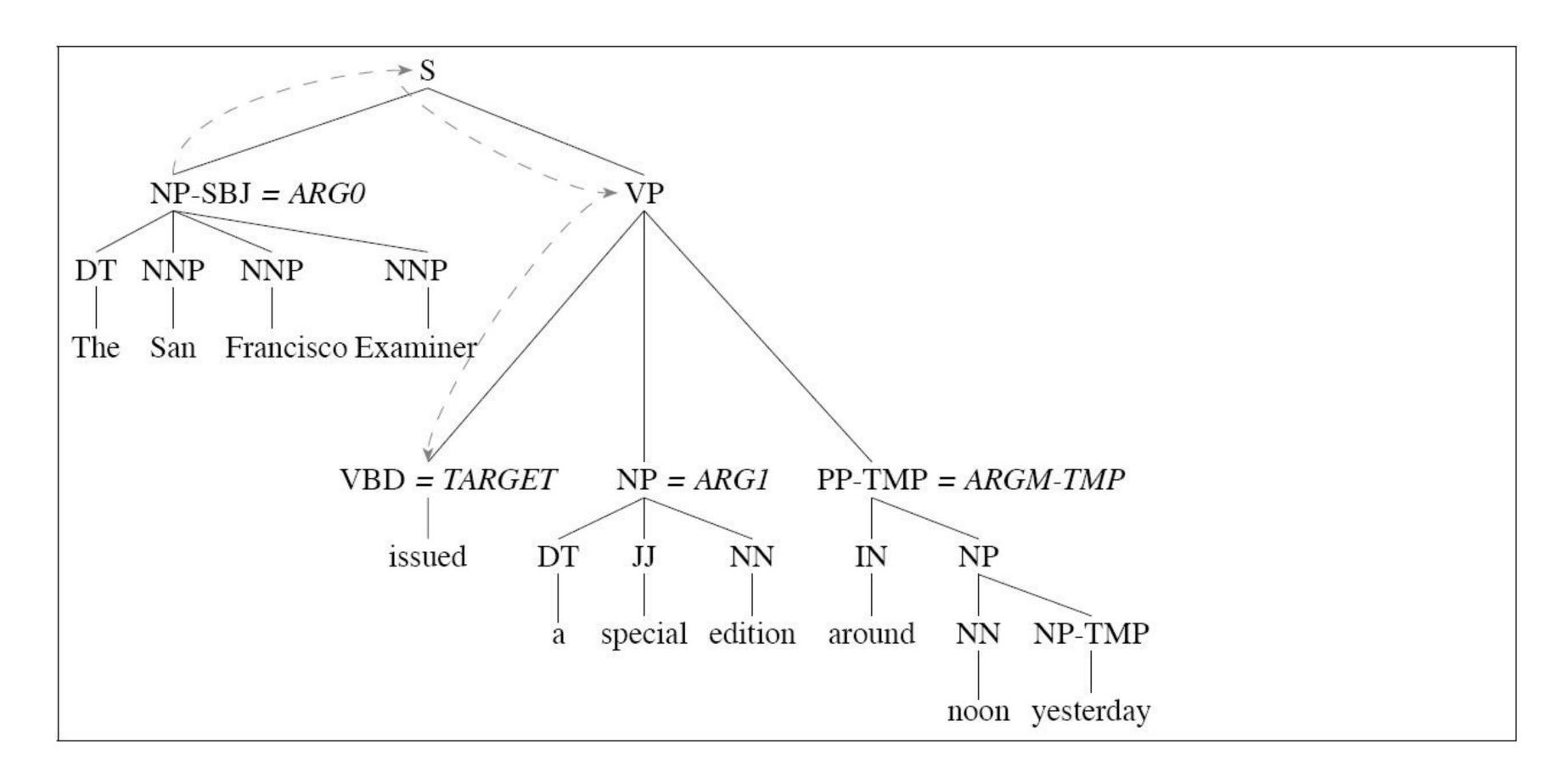


Figure 20.16: Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line shows the **path** feature **NP** \uparrow **S** \downarrow **VP** \downarrow **VBD** for **ARGO**, the NP-SBJ constituent *The San Francisco Examiner*